If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+16n-30=0
a = 1; b = 16; c = -30;
Δ = b2-4ac
Δ = 162-4·1·(-30)
Δ = 376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{376}=\sqrt{4*94}=\sqrt{4}*\sqrt{94}=2\sqrt{94}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{94}}{2*1}=\frac{-16-2\sqrt{94}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{94}}{2*1}=\frac{-16+2\sqrt{94}}{2} $
| 2s-34+3s-41=180 | | 6x^2+50x=4070 | | 3=8(u+6)-3u | | -18=4(x-6)-7x | | 3440-140x=2000+220 | | 19g-3g+18g+2g=14 | | 36+x/2=50 | | 3x-8=5x-4=180 | | 9d+3d-2d+7d-2d=18 | | 5x-4=3x-8=180 | | 5x-21=3x+17=180 | | 6-5x=-1+3x | | 3k+3=33-24 | | X^2+32=8x-4 | | v/6+1.2=-8.4 | | 1591/x=159100 | | 7c+47=180 | | 5(2x+2)-7=3x+6 | | -3u+1/3=-1/4u-7/2 | | -22=-4a+1 | | -3x4=11 | | 2x/5-3=8 | | y=-8/5-4 | | y=10+7/13 | | 14a+1=14.5(2) | | 7y=-6-5y-7 | | 4a-2=-8 | | 3t=180/6.5 | | 7+x-3(3+32/8)=3 | | 2x-11=9x+4 | | -x+0.8=-0.9x+0.76 | | 5.8+5.2x=-2.3+6.1x |